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Osteopathic manipulative treatment (OMT) has been demonstrated to be an effective
therapy in several clinical conditions and age groups. Despite the clinical effectiveness,
lack of robust data in terms of neurobiological, specifically autonomic, mechanisms of
action is observed. Preliminary studies showed a parasympathetic effect leading to a
trophotropic effect of OMT. However, these data are limited to heart rate variability (HRV)
analysis. In order to study further the role of OMT on the autonomic nervous system,
a cross-over randomized controlled trial RCT has been designed to test the effect of
osteopathic treatment compared to sham therapy on a range of autonomic parameters.
Thermal images, HRV and skin conductance data were collected on a sample of healthy
adults. The study design consisted of two sessions (OMT and SHAM), 1 treatment per
week, lasting 35 min each, composed of 5 min of baseline, 25 min of treatment, and
5 min of post-touch. During the baseline and the post-treatment, participants received
no touch. Thirty-seven participants (aged 27 ± 5 years old, male ratio 40%) completed
the study. Multivariate analysis showed a significant parasympathetic effect of group
as well as of epoch on thermographic data of the nose (estimate 0.38; 95% CI 0.12–
0.63; p < 0.01), left (0.17; 0.06–0.27; <0.001) and right (0.16; 0.07–0.24; <0.001)
perioral as well as on the forehead (0.07; 0.01–0.12; <0.01) regions but not for the
chin (0.08; −0.02 to 0.18; 0.13). Consistent with a parasympathetic effect, analyses
demonstrated a difference between OMT and sham groups on the nuHF (p < 0.001)
and DFA-a1 (p < 0.01) as well as on skin conductance (<0.01). The present research
supports the hypothesis that a single session of OMT as compared to sham induces
autonomic consequences in healthy non-symptomatic adults. Clinicaltrial.gov identifier:
NCT03888456, https://clinicaltrials.gov/ct2/show/NCT03888456.
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INTRODUCTION

Osteopathy is a complementary touch-based manual medicine
primarily used by different age groups of patients (Licciardone
et al., 2013; Cerritelli et al., 2014, 2015b; Pizzolorusso et al.,
2014; Luciani et al., 2015, 2018; Schwerla et al., 2015; Steel
et al., 2017) and in a wide variety of clinical conditions
(Cerritelli et al., 2011, 2015a, 2016a, 2017b; Cicchitti et al.,
2015; Ruffini et al., 2016; Franke et al., 2017; Lanaro et al.,
2017). Several studies showed positive clinical effects as compared
to sham, placebo, usual care or physical devices (Pizzolorusso
et al., 2011; Cerritelli et al., 2013, 2015a, 2016b; Martelli
et al., 2014). Notwithstanding, however, the reported clinical
effectiveness of osteopathy from several studies (Cerritelli et al.,
2019), the underpinning mechanisms of action of osteopathic
manipulative treatment (OMT) remains an open question to
explore further. And yet, this is crucial to tackle in order
to identify, more precisely, the neurobiological pathways of
the OMT, which can be of help for future clinical and
research applications.

Based on the current evidence, it is difficult to identify
what are the main neurobiological elements involved during
and after administering an osteopathic session. Indeed, it has
been suggested that possible OMT mechanisms are modulated
by the autonomic nervous system (ANS) functions (Ruffini
et al., 2015; D’alessandro et al., 2016), where interoceptive
mechanisms might be involved (Cerritelli et al., 2020),
leading to a reduction of pro-inflammatory cytokine release
(Licciardone et al., 2012; Degenhardt et al., 2017). This evidence
was shown both in vitro (Zein-Hammoud and Standley,
2015) and in vivo (Degenhardt et al., 2017), suggesting an
anti-inflammatory role of OMT (D’alessandro et al., 2016).
McGlone et al. (2017) argued that OMT could putatively
decrease cytokine production and sympathetic activity,
generating a cascade of physiological and neurobiological
events, which in turn can modulate the inflammation and
the ANS reactivity.

The activity of the sympathetic and parasympathetic systems
might play a central role in the OMT effects. Ruffini et al.
(2015) demonstrated on healthy adults that one session of OMT,
compared to sham and no intervention, induces immediate
parasympathetic effects suggesting a trophotropic effect. The
authors measured autonomic response using linear and non-
linear parameters derived from heart rate variability (HRV) while
participants laid supine in a temperature-humidity controlled
room. Fornari et al. showed in a more recent study, enrolling
healthy subjects, who underwent a laboratory stress episode,
i.e., mental stressor, that OMT as compared to sham therapy
produced a chronotropic effect (reducing the heart rate) and
an induced sympathovagal balance (Fornari et al., 2017),
thus proposing a crucial role of ANS in the context of
the action of osteopathy. However, it is worth to note that
the majority of scientific studies, investigating the role of
ANS in osteopathy, focused their attention mainly on one
of the autonomic parameters, the HRV, showing higher high
frequency (HF) values, lower low frequency (LF) values as
well as lower LF/HF ratio. Therefore, it could represent a

limited measure as compared to the variety of physiological
mechanisms controlled by the ANS. To further understand
the mechanisms, it would be necessary to combine different
autonomic measures. The current study is designed to meet
this need employing thermal InfraRed Imaging (IRI) to assess
regional facial temperature, and simultaneous measurement of
cardiac and skin activity to derive autonomic parameters such as
electrodermal activity (EDA) and HRV.

In this regard, IRI allows researchers to precisely estimate
cutaneous temperature, a proxy of autonomic activity, through
a contactless technique. The validity of IRI has been extensively
demonstrated by studies showing how autonomic activities can
be depicted from specific facial temperature patterns induced
by different physical or psychological states (Shastri et al.,
2009; Ioannou et al., 2014; Merla, 2014; Cardone and Merla,
2017). The specific variability of temperature patterns in distinct,
standardized facial regions has been regarded as reflecting the
activation or deactivation of the sympathetic nervous system.
For instance, an increase of the temperature in the periorbital
regions is reported to be a proxy for a flight or fight response,
while nasal skin temperature variation represents a specific
autonomic effect (Ioannou et al., 2014). In particular, for the
nasal area, an increase of temperature to a baseline condition
is indicative of a parasympathetic activation while a decrease of
temperature implies a sympathetic effect (Cardone and Merla,
2017). Moreover, the reliability of IRI as a tool for the detection of
the psycho-physiological state of the participants has been proven
by simultaneous EDA recordings, more specifically, galvanic
skin response (GSR) measurements. Galvanic skin response
signals have been shown to correlate with the number of active
sweat glands, which activation can be easily revealed by facial
thermal IR imaging by the appearance of cold dots over the
face. Together with the hands’ palm area, strong activation
of the sweat gland is shown in the maxillary, perioral, and
nose tip regions.

Multiresolution analysis of the temperature signals reveals
tonic (baseline and/or general) and phasic (event-related)
components strongly correlated with GSR sympathetic
constituents (Shastri et al., 2009; Krzywicki et al., 2014).
Thus, examining changes in regional temperature over time has
been considered a suitable option to study the ANS additionally.

In this context, only one study has been carried out
in osteopathy, using thermal imaging. Polidori et al. (2018)
recently published a proof-of-concept study, using a case
report, which tested the use of IRI as an additional diagnostic
tool in the osteopathic procedure. The authors showed that
IRI thermography was able to detect low back pain changes
immediately after OMT. However, as pointed out by the
authors, this exploratory research, with all the limitations
of the case study, might pave the way for further trials to
measure the temporal effect of OMT using IRI accurately.
The present study, therefore, aims at using a combination of
measures including IRI, GSR, and HRV to investigate autonomic
correlates of changes from baseline levels of healthy participants
during and after OMT. The hypothesis is that the OMT, as
compared to the control condition, would induce a more robust
parasympathetic response.
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FIGURE 1 | Flow-chart of the study.

MATERIALS AND METHODS

The experimental protocol was designed for a randomized-
controlled single-blinded cross-over study. It enrolled 37 healthy
participants, of either gender (M = 19; 40%), aged between 18
and 35 years old (27.2 ± 5.1), and who did not undertake any
pharmacological treatment during the previous 4 weeks and
were naïve to osteopathic treatment. Exclusion criteria were
intended to avoid any condition that might have any significant
autonomic effect and included: any cardiovascular, neurological,
musculoskeletal, psychiatric, genetic or congenital disorders,
current pregnancy or breastfeeding, and menstrual flow during
the session. Smokers, as well as drug abuse participants, were
excluded. Participants were asked to refrain from alcohol, caffeine
and cardiovascular exercise for 24 h prior to the experimental
session to control for external confounders.

Volunteers from different universities were recruited from
March 2019 to May 2019 through e-mail, phone, or direct

contact. Participation in the study was volunteered, and no
reimbursement was provided to the participants.

The Institutional Ethics Committee of the University, “G.
D’Annunzio” of Chieti-Pescara, approved the study and written
informed consent from all participants were obtained before the
experiment according to the Declaration of Helsinki. The trial
was registered on clinicaltrials.gov identifier: NCT03888456.

Randomization
Participants underwent a thermal imaging protocol and were
randomly divided into two groups using a 1:1 ratio and were
assigned in the first session to either the OMT (Group A) or the
SHAM group (Group B) (Figure 1). Block randomization was
performed according to a computer-generated randomization
list using a block size of 9. Participants were unaware of the
study design and outcomes as well as of group allocation. The
randomization was performed and stored in a secure web-based
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space and an information technology consultant was responsible
for the process.

Baseline Assessment
Before the thermography session, participants were asked to
complete paper-based questionnaires. The socio-demographic
questionnaire was administered to collect baseline data in terms
of age, gender, BMI, marital status, academic degree, type of
work. The State-Trait Anxiety Inventory (STAI-Y1 and Y2)
was used to test trait anxiety (Spielberger et al., 1983) and the
Edinburgh Handedness Inventory was utilized to investigate the
hand dominance (Oldfield, 1971).

Experimental Design
The study design consisted of two sessions over 2 weeks, 1
session per week, lasting 60 min each, composed of 20 min
rest period before measurement, 5 min of baseline, 25 min of
treatment, 5 min of post-touch and the last 5 min to fill the
post-session questionnaires. During the baseline and the post-
treatment, participants received no touch.

The first session could be rescheduled if the participant
presented at least one of the following exclusion criteria: acute
pain in the last 72 h, consumption of any medicine or drug in the
72 h before the session, menstrual flow during the intervention
day, alcohol consumption in the last 48 h. Participants were
considered drop-out in case of non-attendance at the second
session. Participants allocated to treatment groups received both
OMT and sham therapy session at different time points based
on the cross-over design. At the first session, group A received
OMT while group B received sham treatment. Subsequently,
in the second session, group A received sham treatment while
group B received OMT.

Manual sessions were performed in the same room, with
stable temperature and humidity, to avoid any influence of bodily
thermoregulation (Cardone and Merla, 2017). Moreover, the two
sessions were scheduled at the same hour to account effects
due to the circadian rhythm. The OMT intervention consisted
of an initial manual assessment followed by a treatment. The
evaluation aimed at localizing somatic dysfunctions according
to tissue alteration, asymmetry, range of motion and tenderness
parameters (TART) which led the osteopathic evaluation and
treatment (Cerritelli et al., 2017a). Somatic dysfunctions were
found in the whole body, then balanced one by one to identify
a primary order of intervention based on TART parameters.
Osteopathic manipulative treatment techniques were focused
on correcting the somatic dysfunctions found during the
initial physical examination and included balance ligamentous
techniques, balance membranous techniques, and cranio-sacral
techniques (Magoun, 1976). All techniques that required contact
with the head were excluded. For this trial, sham therapy
mimicked, without applying any technique, the procedures used
for osteopathic care. The osteopathic session lasted 25 ± 1 min.
The sham procedure entirely overlapped the OMT in terms of
contact time, session length, treatment context. Specifically, the
sham session consisted of a gentle static touch applied, using
the palm of the hands, over the 25 min among the following
areas: upper and lower limb, pelvis, abdomen, thorax, and

vertebral spine. Each area was touched between 3 and 4 min
without paying attention to the area contacted. The operator was
engaged in an auditory endogenous covert oriented attention task
(Cerritelli et al., 2017a) and randomly chosen the sequence of
bodily areas to touch.

All interventions, both OMT and sham, were performed by
the same operator (man, 40 years old with 15 years of osteopathic
clinical experience, certified osteopath DO trained following the
WHO benchmark). Besides, the participants were asked to lie still
and keep the eyes closed during the baseline, treatment, and post-
touch periods.

Post-session Rating
Several measurements were acquired at the end of the
experimental session in order to assess the quality of the received
touch. The Touch Perception Task (Guest et al., 2011) was used
to describe the type of touch perceived by the participants during
the sessions. In addition, a 5-point Likert scale was administered
to classify the touch received by participants (1 = very light,
2 = light, 3 = moderate, 4 = heavy, 5 = very heavy). Moreover,
the participants were invited to complete the Amsterdam Resting
State Questionnaire to report the perception of their feeling
during the session (Diaz et al., 2013).

Procedure
Prior to testing, each participant was left in the experimental
room for 20 min to allow the baseline skin temperature
to stabilize (Cardone and Merla, 2017). As per standard
guidelines in IRI research, the recording room was set as a
thermoneutral environment, i.e., at standardized temperature
(23◦C) and humidity (50–60%) controlled by a thermostat,
to avoid thermoregulatory-induced alterations. Participants sat
comfortably on a chair during the acclimatization period, while
during the measurement period participants laid down on a
treatment table.

Data Recording and Preprocessing
Thermal Imaging
The facial temperature was recorded using a digital thermal
infrared camera FLIR SC660 (FLIR, Wilsonville, OR,
United States) (640 × 480 bolometer FPA, noise equivalent
difference temperature (NEDT): <30 mK @ 30◦C, field of view:
24◦

× 18◦).
The camera was placed 60 cm above the participant and

pointed toward the face of the participant. The sampling
frequency was 10 Hz. To remove the effects related to the
potential drift/shift of the sensor’s response and optical artifacts,
the camera was blackbody-calibrated. The quality of recorded IRI
was checked by visual inspection. No videos were excluded.

According to the literature, perioral, nasal tip, chin, and
forehead areas were chosen as regions of interest (ROIs; Garbey
et al., 2007; Shastri et al., 2009; Ioannou et al., 2014). The
following criteria were used to ensure a reliable positioning and
sizing of the ROI: for the nasal tip, a circular ROI was placed over
the nasal center and did not extend beyond the nostrils; for the
perioral regions two ellipses whose longer axis ran from nose to
mouth boundaries, and shorter axis was half of the longer one; for
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the chin, a circular ROI was placed on the mental protuberance;
for the forehead, a circular ROI was positioned in the center of
the midline frontal region. Within each IRI sample image, these
ROIs moved together with the relative movement of the face
employing; therefore, a soft-tissue tracking algorithm, validated
in several research works (Manini et al., 2013). When the tracking
algorithm failed (e.g., because of too much head rotation, a
deep variation of thermal pattern for the first initializing frame),
the failure was displayed as a large variance of the extracted
signal, which was corrected by visual inspection by substituting
contaminated samples with the mean value of six samples before
and after the period. The average artifact-corrected temperature
within the selected ROI was considered indicative of autonomic
activity (Cardone and Merla, 2017).

The IRI signals were filtered with a zero-lag third-order
Butterworth low-pass filter (0.4 Hz) to eliminate the high-
frequency oscillations that were unrelated to autonomic
modulations (Pinti et al., 2015).

Each participant’s time series was then z-transformed
(subtracted by their average value and divided by their standard
deviation) (Rosenblatt, 1952) to account for between-participant
variance in IRI amplitude.

Skin Conductance
Skin conductance response (SCR) was recorded on the
thenar/hypothenar muscles of the non-dominant hand (Ogorevc
et al., 2013) using the AD instrument Powerlab system,
which provided a GSR amplifier with low voltage, 75-Hz
AC excitation, and automatic zeroing. The finger electrodes
were made by stainless steel and were held with Velcro tape.
The sampling frequency was 1 kHz. The SCR signal was
filtered with a zero-lag third-order Butterworth bandpass filter
(0.01–5 Hz) (Bach et al., 2010) and then down-sampled to
10 Hz to be homogenized with the IRI. The tonic and phasic
components of the signal were separated using a continuous
decomposition analysis provided by Ledalab, which is a Matlab-
based software (Benedek and Kaernbach, 2010). The SCR signal
was then z-transformed.

HRV Data
Cardiac signals were recorded by means of a finger pulse
transducer, using the AD instrument Powerlab system. A finger
pulse transducer is a piezo-electric element, able to convert
the mechanic force applied to its active surface into an analog
electrical signal. Similarly, to what is done to the ECG signal in
terms of HRV calculation, it is possible to extract the pulse rate
variability (PRV) from the finger pulse signal. As PRV can be
used as a surrogate for HRV at a resting position (Shin, 2016),
the analogous of the R–R intervals were extracted from the finger
pulse signal. Using customized software, outliers were identified
and removed from the data. Intervals were then imported in
Kubios software1 to compute HRV parameters.

HRV analysis method, based on processing recorded RR
intervals, was divided into linear analysis (time and frequency
domain) and non-linear analysis (Aubert et al., 2003). From

1http://kubios.uef.fi

power spectra (Fast Fourier transformation using Blackman
Harris window) of equidistant linear interpolated (4 Hz)
tachograms (resampled to 2 Hz), the following frequency domain
standard HRV index was used for linear analysis: nuHF, from 0.15
to 0.4 Hz, i.e., signal of parasympathetic heart rate modulation
(No authors listed, 1996). Considering non-linear analysis,
the DFAα1 parameter was computed. DFAα1 is considered a
sensitive parasympathetic index (Kemp et al., 2012) able to
discriminate possible long-term correlations and complexity of
RR interval series (Hardstone et al., 2012). A fractal structure
of heart rate was quantified by estimating a short-term, alpha 1,
fluctuations, obtained from the range 4 ≤ n ≤ 16.

Data Analysis
Thermal Data Analysis
On the participant level, thermal data were averaged into 30-
s-long time bins and subdivided into baseline, touch and post-
touch periods. Due to the nature of thermal data, that is
sensitive to movement artifacts, and to avoid non-experimental
movements, individual participant’s baseline values containing
data that was larger or smaller than three SDs of the whole sample
mean were selected and considered to be artifacts. Such data were
then replaced by the participant’s non-artifactual epochs mean
from the Baseline period. Afterward, each 30-s long data from
the Touch and Post-touch periods were converted to a change
from Baseline, by subtracting that participant’s mean baseline
from each of the epochs in the Touch and Post-Touch periods.
Again, for each participant, data points which lay more than
three SDs outside the grand mean for the sample were identified
and artifactual epochs were replaced with the mean of that
participant’s non-artifactual epochs within a given time period.

Skin Conductance Analysis
Skin conductance response was analyzed following the same
procedure used for thermal data. Indeed, SCR data were split, and
averaged into 30-s bins and broke down into baseline, touch, and
post-touch period. Then artifacts were identified and corrected.

HRV Analysis
As HRV analysis is considered, the restricted weak stationarity
(RWS) test was performed to assess stationarity (Magagnin et al.,
2011) over M patterns. To test the normality of R–R distribution
(p < 0.05), the Kolmogorov Smirnov goodness-of-fit was used.
In case of non-normal distribution, a log transformation was
applied. Subsequently, M patterns were tested for normality. The
patterns were randomly chosen from a set of sequences of length
L (Magagnin et al., 2011).

The arithmetic mean and standard deviation, as well as
median, percentage, and range were used to explore the general
characteristics of the study population.

To compare the OMT and sham group at enrollment,
univariate statistical tests, student t-test and chi-square test
were performed. To study the independent effect of OMT
on thermic, skin response and HRV endpoints, a repeated
measure analysis based on mixed-effect regression (MER)
model considering random effect for groups and a fixed
effect for period was used to explore any difference further.
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Post-hoc pairwise analysis adjusted by Holm-Bonferroni
correction was utilized after any statistical difference
resulted from MER.

Statistical Analysis
Before the investigation, the number of participants (n) was
calculated. The neuroscience literature in thermography reported
expected effect size estimates to be relatively high. Choosing,
therefore, an effect size of 0.7, together with an alpha value of
0.05 and a Beta of 0.80 typical in clinical studies have been
included in the R statistical program to estimate the sample size.
Intending to reveal, also, intraindividual as well as interindividual
differences, a total of n = 35 persons were examined in a
crossover design.

To indicate statistical difference, two-tailed p values of
less than 0.05 was considered. The effect size was computed
using Cohen’s d. This data analysis was carried out using
nlme, multcomp, stats, effsize packages of the R statistical
program (v. 3.5.2).

RESULTS

Sample Characteristics and Baseline
Measurements
Fifty participants were screened, of whom 37 met the entry
criteria, gave written informed consent and were randomly
assigned to the study intervention groups (Figure 1). The
demographic characteristics and baseline values are shown
in Tables 1, 2 showing no statistically difference at the
baseline among groups.

Besides, there were no differences in terms of type of touch
felt between sessions (session 1: mean 8.15 ± 1.8; session 2:
8.36 ± 1.4; t = -0.56, df = 69.7, p-value = 0.58) and the type of
touch received across sessions (X2 = 0.01, p-value = 0.99).

TABLE 1 | Demographic and clinical characteristics of the OMT and sham
group at baseline.

Characteristics OMT Sham p > |t|

Demographic

Age 27.1 ± 5.0 27.6 ± 5.3 0.76

Female sex (%)* 13 (68) 10 (56) 0.64

BMI 22.3 ± 4.6 23.4 ± 3.3 0.40

Civil state (%)* 1.00

Not-married 17 (89) 17 (94)

Married 2 (11) 1 (6)

Education title (%)* 0.58

High school 11 (58) 11 (61)

Academic degree 8 (42) 7 (39)

Clinical

STAI – Y1 43.3 ± 4.2 45.1 ± 4.3 0.14

STAI – Y2 43.0 ± 4.5 42.5 ± 5.2 0.76

Data are presented as mean ± standard deviation. *N(%). p Values from student t
test. *from X2 test. BMI, Body Mass Index; STAI, State-Trait Anxiety Inventory.

TABLE 2 | Thermic and galvanic skin response baseline data.

Characteristics OMT Sham p > |t|

Thermic

Forehead 36.5 ± 0.7 36.3 ± 0.7 0.43

Nose 34.5 ± 3.3 34.4 ± 3.8 0.92

Right Perioral 36.0 ± 1.3 35.9 ± 1.2 0.76

Left Perioral 35.9 ± 1.6 35.8 ± 1.5 0.80

Chin 35.9 ± 1.2 35.7 ± 1.2 0.67

GSR 1.1 ± 3.4 2.5 ± 2.3 0.10

Heart rate 69.9 ± 3.7 69.8 ± 4.1 0.92

Data are presented as mean ± standard deviation. p values from student t test.
GSR, galvanic skin response.

Temperature Changes
Figure 2 showed an example of thermic images
for the two groups.

Multivariate analysis showed a significant increase
on the OMT group as compared to the SHAM for the
thermographic data of the nose, left and right perioral
as well as for the forehead region but not for the chin
(Table 3). Post hoc Bonferroni corrected analysis revealed
that the group receiving OMT showed a significant increase
of temperature from baseline both in the touch and post-
touch periods (all comparisons p < 0.01). Whereas, the
group receiving SHAM treatment showed no significant
change (Figure 3).

To further explore this analysis, a trend analysis was
performed looking at the differences compared to the baseline
value of the touch and post-touch period. The OMT group
showed a general faster and larger increase of temperature
early in the touch period, which was sustained throughout
the post-touch period, unless for the forehead, which showed
a decrease. However, the SHAM group did not show this
effect (Figure 4).

Heart Rate Variability
Multivariate analysis showed a statistically significant difference
between OMT and SHAM groups on the nuHF (p < 0.001)
(Figure 5). Bonferroni post hoc analysis showed that the
OMT group significantly increased nuHF values compared to
sham (p < 0.01).

Similarly, a statistically significant difference was revealed for
DFA-a1 (p < 0.01). Bonferroni post hoc analysis demonstrated
that the OMT group had a significant effect compared to
SHAM (p < 0.01).

Electrodermal Activity
Table 4 shows data for GSRs at different time points. Further
MER analysis showed a statistically significant difference between
the groups for the skin conductance values (1.09; 0.30–1.89;
<0.01). Indeed, as demonstrated by Figure 6, participants who
received the OMT significantly increased the GSR from baseline
values both in touch and in post-touch periods. SHAM group did
not show any significant change.
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FIGURE 2 | Facial thermal changes in a representative participant receiving either osteopathic manipulative treatment or sham. Panels (a,d) represents baseline
period before the touch timulation. Panels (b,e) show touch period. Panels (c,f) demonstrate post-touch period. A general temperature increase can be observed
over the whole face in the osteopathic group as compared to the sham. In particular, while the chin slightly changes their average temperature values, nose tip,
perioral, maxillary, and forehead regions clearly present a temperature increase where red areas can be easily spotted. OMT, osteopathic manipulative treatment.

DISCUSSION

The present randomized cross-over study showed that the OMT
increased the temperature on critical areas of the face, more
specifically the nose, bilateral periorbital regions and forehead.
In contrast, when healthy non-symptomatic adult volunteers
received the sham therapy, which would respond to a gentle static
touch, no significant change in the temperature was shown.

Osteopathic manipulative treatment was also associated with
a specific variation of HRV parameters, that is an increase of HF

TABLE 3 | Multivariate linear mixed effect analysis for thermic outcomes.

Beta 95% CI p < |t| Cohen’s d

Nose 0.38 0.12–0.63 < 0.01 0.72

Left perioral 0.17 0.06–0.27 < 0.001 0.59

Right perioral 0.16 0.07–0.24 < 0.001 0.52

Forehead 0.07 0.01–0.12 < 0.01 0.42

Chin 0.08 -0.02 to 0.18 0.13 0.40

Data showed the comparison between osteopathic manipulative treatment versus
sham therapy. The beta showed the values of the group as well as of epoch factor.

domain and a reduction of DFA-a1 values, which was not seen
when participants received sham treatment.

Moreover, osteopathy was shown to be associated with an
increase of skin conductance, that means a sympathetic response,
which did not appear on the sham group.

Part of these findings is consistent with our previous studies
in adults, which report that a single osteopathic session produced
a parasympathetic response to a significantly greater extent than
sham or no-touch procedure (Ruffini et al., 2015).

The present study extends this previous work by investigating
effects over different autonomic outputs and a longer study
period. While previous research used only HRV measurements
with changes in heart-rate, RR interval, over the treatment
period, here we reported that not only the HRV parameters
change but that this variation is also associated to a change
in the temperature over specific face regions. Indeed, by
analyzing high resolution thermal IRI to investigate the
autonomic reactivity reflected in changes of facial temperature,
we showed that when participants are exposed to osteopathic
treatment, there is a significant increase of the temperature
in specific areas of the face that are recognized being proxies
of the ANS activity (Ioannou et al., 2014). For example, the
tip of the nose has been used mainly as an indicator of
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FIGURE 3 | Bar chart of thermic baseline differences changes of different region of interest (ROI) during the Touch (T1–T0) and Post-Touch (T2–T0) period. Values
are mean ± standard errors of the mean. (A) nose tip; (B) forehead; (C) left perioral; (D) right perioral; (E) chin. OMT, osteopathic manipulative treatment. Black lines
indicate the significant effect of Group. *p < 0.01.

autonomic response. Some research showed that nasal skin
temperature might reflect an increase or decrease of arousal
states, producing respectively vasoconstriction/temperature drop

and vasodilatation/temperature raise, in different clinical and
laboratory conditions (Mizukami et al., 1987; Tanaka et al., 1998;
Nakayama et al., 2005; Nakanishi and Imai-Matsumura, 2008;
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FIGURE 4 | The time course in minutes of thermic data in response to osteopathic manipulative treatment and SHAM during the 20-min-long Touch & 5-min-long
Post-Touch periods. (A) Nose tip; (B) forehead; (C) left perioral; (D) right perioral; (E) chin. Data are presented as change in temperature-per-minute from Baseline in
each period. The shaded area represents ± 1 standard errors of the mean. OMT, osteopathic manipulative treatment.

Nozawa and Tacano, 2009; Kuraoka and Nakamura, 2011).
Considering, instead, the other facial regions, increased forehead
temperature may indicate activation of the corrugator muscle,

which is highly correlated with mental stress (Ebisch et al., 2012;
Zhou et al., 2013); consequently, a deactivation reflects mental
relaxation. Conversely, perioral region thermal distribution is
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FIGURE 5 | Bar chart displaying the mean heart rate variability (HRV) parameters values recorded in the baseline, Touch and Post-Touch period among the
osteopathic and sham group. HF, high frequency in normalized unit; DFA-1, detrended fluctuation scaling exponent. Data presented are means ± standard errors of
the mean. Black lines indicate the significant effect of Group. *p < 0.01. OMT, osteopathic manipulative treatment.

strictly related to the sudomotor response activity, given the
high concentration of sweat glands in this area (Cardone
and Merla, 2017). A decrease in the temperature over the
perioral region would imply activation of the sweating function
and consequently a reaction, that is directly linked to the
sympathetic ANS.

We interpret the accompanying increase of these temperatures
as reflecting the positive parasympathetic effect of osteopathic
treatment on participants’ ANS. Considering the latencies and
amplitudes of responses to OMT, we suggest that the faster
and higher temperature increase reveals autonomic adjustments
typically associated with parasympathetic, more specifically, vagal
response. It is worth to note that induced parasympathetic
vasodilatation reaction has many adaptive functions in the
context of the “rest-digest” response, in particular, that of
redistributing blood flow. This reaction generally corresponds
to an increase in gastrointestinal tract irrigation, a reduction
of the heart rate, activating the vagal nerve favoring, therefore,
a calmer, more relaxed, recovery state response of the body.
Another consequence of this reaction is that the face becomes red,
which may signal an emotional state indicating the presence of a
safe, relaxing environment.

Our findings are also consistent with recent studies indicating
that the use of manual treatment can produce warmth in
given areas treated (Walchli et al., 2014). Here we show these

TABLE 4 | Galvanic skin response (GSR) at different timepoints.

GSR OMT Sham p > |t|

T0 1.06 ± 0.70 2.49 ± 0.53 0.10

T1 1.41 ± 0.81 1.90 ± 0.77 0.66

T2 3.09 ± 1.02 3.25 ± 0.74 0.90

Diff T1–T0 0.35 ± 0.76 −0.79 ± 0.60 < 0.01

Diff T2–T0 2.03 ± 0.86 0.56 ± 0.64 < 0.01

Data are presented as mean ± standard error. p values from student t test.

differential responses to OMT and sham on validated and
standardized thermic areas using a robust methodological study
design. However, analyzing closer the data of Walchli and
colleagues showed that the mean temperature did not change
between the manual procedures. Instead, higher variability
in the variance of the sample, as well as the fact that the
study was underpowered, might explain the group differences
(Walchli et al., 2014). Thus, further research is required to
confirm this data on autonomic functions and match with
other measurements.

Other measures used in the present study were identified in
previous recent research that determined the association between
thermal data and the EDA, specifically GSR data (Vetrugno et al.,
2003). Electrodermal activity has been demonstrated to reflect
sympathetic cholinergic sudomotor function, a modification of
which generates skin resistance changes and therefore electrical
conduction alteration. Several studies demonstrated its validity,
and therefore EDA has been recognized as a valid index of
sudomotor function (Knezevic and Bajada, 1985a,b) as well
as a sensitive index of bodily arousal (Boucsein et al., 2012).
Galvanic skin response, which assesses EDA, indicates, therefore,
a potential variation in the secretory activity of sweat glands that
is independent of the vascular reaction.

Considering the limitations, the present study examined only
the acute effects of a single osteopathic manipulative intervention
on short-term measures of autonomic functions; in other words,
a single session may have no predicted value compared to
multiple sessions. The sustained effect of very short treatments
is still unknown. Besides, we used pulse transducer data to
calculate HRV, rather than the more common approach of
using ECG. This measurement might limit direct comparison
with studies that use ECG. Moreover, data acquisition using
pulse transducers may be suboptimal because these devices
might not accurately discriminate between the sinus and non-
sinus beats. Furthermore, we enrolled healthy volunteers, who
might react differently from patients. Indeed, patients with a
low parasympathetic tone may see an effect, whereas healthy
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FIGURE 6 | Bar chart of galvanic skin response (GSR) showing baseline differences changes during the Touch (T1–T0) and Post-Touch (T2–T0) period. Values are
mean ± standard errors of the mean. Black lines indicate the significant effect of Group. *p < 0.01. OMT, osteopathic manipulative treatment.

volunteers may see no effect. Finally, we did not use a pre-
defined treatment protocol, in order to show an association
between technique and outcomes, but we decided to mimic the
routine osteopathic clinical practice where no rigid pre-defined
protocols are applied.

Future work is needed to determine whether the use of IRI
is suitable for clinical trials enrolling patients with different
pathologies that have been demonstrated to benefit from OMT
and whether thermal data might have a prognostic long-term,
clinically significant, role. In conclusion, OMT is known to have
a significant impact on different age groups (Channell et al.,
2016; Ruffini et al., 2016; Lanaro et al., 2017). While osteopathy
can have some benefits for diverse clinical conditions (Franke
et al., 2014; Cicchitti et al., 2015; Bagagiolo et al., 2016; Racca
et al., 2017; Arienti et al., 2018), a better understanding of the
neurophysiological mechanisms underpinning these effects is
required to improve protocols and plan trials targeting specific
clinical conditions that can benefit the most. The present research
supports the hypothesis that a single session of OMT as compared
to sham induces sympathovagal autonomic effects in healthy
non-symptomatic adults. Offering, therefore, insights for the
development and further plan of manual therapies studies in
the ANS context.
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